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ABSTRACT 

Using a combinatorial  result of N. Hindman  one can extend Jewett 's  me thod  for 
proving that a weakly mixing measure  preserving t ransformation has a uniquely 
ergodic model  to the  general  ergodic case. We sketch a proof of this reviewing 
the main steps in Jewett 's  argument .  

§1. Introduction 

The Jewett-Krieger theorem on the existence of uniquely ergodic models may 

be stated as follows: 

THEOREM (Jewett-Krieger). Let (X, ~, I~, T) be a measure-preserving system 

where (X ,~ ,  ~)  is a Lebesgue space and T:X--~  X an invertible ergodic 

measure-preserving trans[ormation. Then this ergodic system is isomorphic to a 

uniquely ergodic dynamical system (Y, U), where Y is the Cantor set and U is a 

homeomorphism of Y which leaves invariant precisely one Borel probability 

measure. 

The pioneering work was done by Robert I. Jewett in [7]. He proved the 

theorem under the additional assumption that T is weakly mixing. Jewett's 

paper was considered an important breakthrough when it first came out. It is also 

a model of lucidity and elegance. The ideas are simple and natural, the proofs 

straightforward; as a matter of fact the main tools used for the most part of the 
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paper are the Individual Ergodic Theorem and the notion of Kakutani-Rokhlin 

Skyscraper ("building" in Jewett's terminology). In analyzing Jewett's proof it 

turns out that the weakly mixing character of T is used only once in the paper, 

namely in the proof of the Lemma on p. 720 (see lines 2, 3 from below); 

everywhere else in the paper ergodicity suffices. To facilitate matters we shall 

refer to this Lemma as the Key Lemma in Jewett's paper. 

In the introduction to his paper Jewett made the following statement: "It  

seems likely that if the condition of being weakly mixing were replaced by that of 

being ergodic, the theorem would still be valid." Jewett's conjecture was proved 

by Krieger in [8]. This was followed by the papers of Hansel and Raoult [5] and 

Denker [1], giving different proofs of the theorem in the general ergodic case. 

(See also [2]; a detailed account of the history of the Jewett-Krieger theorem can 

be found on pp. 300-301.) It is worth noting that each one of these papers is 

substantially longer and more elaborate than Jewett's original paper. These 

papers also use heavier machinery and sometimes tools that are extraneous to 

the problem, such as entropy, the Shannon-McMillan Theorem, the existence of 

a finite generator, intrinsic Markov chains ( =  subshifts of finite type), etc. 

The purpose of the present paper is twofold. In §2 we give a new result 

concerning abstract measure-preserving systems (Theorem 2). This is of inde- 

pendent interest. In the second part of the paper we show how with this 

additional piece of information the Key Lemma in Jewett's p a p e r - - a n d  hence 

Jewett 's whole proof--carr ies  over to the general ergodic case. This is done in 

§4. To facilitate the reader's task we include in §3 a review of the notion of 

Kakutani-Rokhlin Skyscraper as well as the preliminary lemmas in Jewett 's 

paper. 

§2. A combinatorial result concerning measure-preserving systems 

Throughout this section, (X, ~, /z ,  T) is a measure-preserving system, i.e., 

( X , ~ , ~ )  is a probability space and T : X ~ X  a measurable, measure- 

preserving transformation. 

By a finite partition of X, we shall mean a finite collection ~ = {C~, • • -, C,} of 

disjoint measurable sets, whose union covers X up to a set of/x -measure zero. 

The gauge o[ the partition ~ is defined as 

8(c~) = inf{/z (Ci)I C, ~ ~ and tz (C,) >0}. 

If ~ is another finite partition of X, then ~ v ~ denotes their common 

refinement. 
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In particular, we may consider  q¢ v T - ' ( c £ )  and look at the asymptot ic  

behavior  of 8(c£ v T - ' ( c ¢ ) )  as n ~ o0. This is the object  of  the main result of  this 

section, T h e o r e m  2. 

In what follows we deno te  the set of natural  numbers  {1, 2, 3, • • • } by N and we 

deno te  by i f (N) the collection of all finite subsets of N. 

Let pl, p 2 , ' " , p , , " "  be a sequence  of e lements  in N. We  in t roduce the 

following nota t ion:  For  each a E ~ (N) ,  a ~  0 ,  say a = {i ,  i2,-- ", ik}, we write 

p. = pi,+ pi2 + "'" + Plk. 

We now recall the notion of an IP-set  (see [3] for a detailed study): 

DEFINITION 2.1. A subset S CN is called an IP-set  if there exists a sequence 

p , p 2 ,  p3,'" ", p , , " "  of distinct e lements  of S such that S coincides with " the  set 

of all finite sums"  

S = {p,, [ a E ~(N) ,  a # 0}.  

S is said to be the IP-set genera ted  by the sequence p,, p2,p3,"" ", p , , , ' " .  

REMARK. Let p,, p2, p3, • " ', p,, • • • be a sequence  of distinct e lements  of N. If 

we extract a subsequence,  then it is clear that the IP-set genera ted  by this new 

sequence is conta ined in the IP-set genera ted  by pj, p2, . .  ", p , , " ' .  

LEMMA 2.1. L e t  n l  < n2  < n3  ( • • • b e  a strictly increasing sequence of  natural 

numbers. Let A E ~¢ with tz ( A ) > O. Then for any e > 0 there exist infinitely many  

pairs ( i , j )  with i < j for which 

t z (A  O T-'",-',~(A )) > I z (A  ) 2 -  e. 

PROOF. We reason by contradict ion.  Suppose that for all (i , j) ,  io<=i<j,  

t z (A  n T ~",-",~(A ))<= t z (A  ) 2 -  e, whence  

t z ( T - " ( A  ) n T - " , ( A  )) < _ t z ( A  ) 2 -  e. 

Let f = l a - / ~ ( A )  and compu te  

o <  f [ f ( T % x ) +  f ( T % * , x ) +  . . .  + f (T%*p-,x)]Zdtz(x)  

f [1r-',o(A)+ " '"  + IT-%*p-,(A)-p#(A)]2dlz 
J 
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<=p(p - 1)(# (A)  2 -  e)+ ptz(A )+ p 2 # ( A  )2- 2p2lx(A )2. 

This last expression clearly tends to -oo as p-~, + ~. This proves the lemma. 

LEMMA 2.2. L e t S C N  bean IP-set. L e t A  E ~ w i t h l ~ ( A ) > O .  Then forany  

e > 0 there are infinitely many elements s E S for which 

p~(A n T S ( A ) ) > / ~ ( A ) 2 -  e. 

PROOF. We may assume without loss of generality that S is generated by a 

sequence satisfying the growth condition p~+~>p~+p2+ "'" +pk, for each 

k E N (otherwise extract a subsequence; see Remark  above). Now set nk = 

p , + - . .  +p~ for each k E N .  Note that for each pair ( i , j )  with i < j  the 

difference n i -  n, = p,+, + pi+2+ " ' "  + pj belongs to S. Also if ( i , j)  and if ( i ' , j ' )  

are distinct pairs with j < j ' ,  then n j , -n~ ,>  n~-  n,. The  proof is concluded by 

applying Lemma 2.1. 

THEOREM 1. Let A , B  @~,  let S CN be an IP-set and assume that 

/x(A n T-~(B)) = e ( s ) > 0  for each s E S .  Then we cannot have e(s)---~O as 

S - ->  9o .  

PROOF. Let q,, q2, q3, '" ", q , , " "  generate S. We have 

Ix(A n T-~ , (B))= e ( q l ) > 0 .  

Now apply Lemma 2.2 to the set A ' =  A n T-q,(B) and to the IP-set R 

generated by q2, q 3 , " ' .  For infinitely many elements r E R we have 

tz (A '  O T-" (A  ')) > e (q~)2/2. 

Note that if r E R then q l +  r ~ S and that 

A n T - " + q P ( B ) D A ' O  T - ' ( A ' ) .  

We deduce /z (A n T-~'*qP(B))> e (ql)2/2 for infinitely many r ~ R, that is 

e(r + ql) > e(q,)2/2. 

This proves the theorem. 

At this stage we need to recall a theorem from combinatorial  number  theory 

due to Hindman [6]: 

THEOREM (Hindman). For any finite partition of N, N = H~ O H2 U • • • O H ,  

one of the sets H, contains an IP-set. 
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A proof of this result using ultrafilters may be found in [4]. Still another proof 

based on topological dynamics appears in [3]. 

THEOREM 2. Let qg = {C,, '"  ", Cp} be a finite partition of X. Then 

limsup~(C£ v T - " ( ~ ) )  > 0 .  
n 

PROOF. Let 

O = {(i, j )  I for some n E N,/x (C~ n T-"  (Cj)) = ~ (~  v T-"  (c£))} 

and for each (i, j )  E O let 

H(i,j)  = {n E N I ~5(~ v T-"(q~))= tz(C, n T-"(Cj))}. 

This yields a finite partition of N, 

N =  O H(i,j). 
(ij)~O 

By Hindman's  theorem, there is (i, j ) E  Q such that H(i, j) contains an IP-set. 

Applying Theorem 1 to C, C, and this IP-set completes the proof. 

§3. A brief review of Kakutani-Rokhlin skyscrapers 

In the remainder of this paper we assume that (X, M, ~, T) is a measure- 

preserving system with (X, M,/z) a Lebesgue space and T : X ~ X an invertible 
ergodic measure-preserving transformation. 

Since the set of periodic points (points x E X whose orbit under T is 

finite) is easily seen to be measurable and T-invariant, we may and shall assume 

that the set of periodic points is void. 
We now recall the notion of "Kakutani-Rokhl in  skyscraper" ("building" in 

Jewett 's terminology). We begin with the notion of "block":  

DEFINITION 3.1. A block is a set of the form 

B = {x, T x , "  ", T"-Ix} 

for some x E X and n E N. The element x is called the initial element of the 

block, the element T"-lx is called the last element of the block and the integer n 

is called the height of the block B. 
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DEFINITION 3.2. A Kakutani -Rokhl in  skyscraper, or simply a skyscraper, is a 

collection B of disjoint blocks such that 

(i) For each n E N, 

F, = {x E X ]{x, T x , "  ", T" - ' x }  E B}, 

i.e. the base of blocks of height n, is a set in M. 

(ii) E,~N n/z ( F . ) =  l, i.e. the skyscraper covers X up to a set o f / z - m e a s u r e  

zero. 

Before stating the next lemma we need some more notation. 

For each finite set A CX, f E  L ' ,  n E N ,  we write 

I A I = cardinality of A, 

1 
a v a f  = ~ x~a ~ f ( x  ), 

1 n - I  

T. f  = n k~=o foT k. 

LEMMA 3.1. L e t f E L ' , e > O a n d p E N .  T h e r e i s t h e n a s k y s c r a p e r B a n d a n  

integer q > p such that 

(a) For every B E B, either I B [ = p or p < I B [<-_ q. 

(b) For every B ~ B with I B I > P, 

< e .  

If× fd/z - avBf < e .  

For a proof see Jewett ' s  paper, p. 719. 

§4. Proof of the Key Lemma in Jewett's paper in the general ergodic case 

The Key Lemma in Jewett ' s  paper  is the following: 

KEY LEMMA (Jewett). Let f : X--~ R be a simple function, let e >0  and 

m E N. Then there exists a simple function g • X --~ R such that" 

(i) / z ( { x l f ( x ) J g ( x ) } ) < e ;  



Vol. 33, 1979 UNIQUELY ERGODIC MODELS 237 

(ii) I l f x f d ~  - T.g II~< ~ for all sufficiently large n E N; 

(iii) The set { ( g ( x ) , g ( T x ) , . . . , g ( T " - ' x ) ) l x  E X}  is contained 
{(f(x) , f (Tx), . . . , f (Tm-'x))lx ~ X}. 

in the set 

A , =  x E X  I f d l z -  T~f(x) < ~  forallk_->_n . 

By the Individual Ergodic Theorem, /z(A,)  ..~ 1. Choose n > m large enough 

that 

(2) /z (A.)  > 1 - a 

and then choose p > n such that (1) holds. 

Let now 

K={( i , j ) l l<=i , j<=r ,  and /z(E, N T - P ( E i ) ) > 0 }  

For  each n ~ N let 

lim sup 6(c~ v T-P(T~)) > O. 
p 

Hence there is 0 < a < 1 such that for infinitely many p E N the following holds: 

(1) 
l<=i,j<= r 

and 
p.(E, n T-P(Ej)) > 0 

} ~ #(E,  N T P(E~))~ o~. 

and denote  

Eq = E, n T-P(Ej), for ( i , j )  E K. 

Then {E~i l ( i , j ) E  K} is a finite partition of X, # ( E q ) =  > a for all ( i , j ) E  K and 

hence by (2): 

PROOF. The vector-valued function F : X--~ R'~, 

x ---~F(x) = ( f ( x ) , f ( T x ) , "  " , f (T  m ~x)), 

assumes  only a finite number of values with strictly positive probability, say a,, 

l<=i<-r. Let 

E, = { x E X I F ( x ) = a ,  }, l<=i<=r. 

Then c¢ = {E~,. •., E~} is a finite partition of X in the sense of §2. By Theorem 2 

(see §2), 
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(3) tz(A. nE,j)>O forall(i,j)EK. 

By Lemma 3.1 applied to f, e/2, p, there is a skyscraper B and an integer q > p  

such that: 

(a) For every B E B, either I B [ = p or p <IB]=< q. 

(13) For every B E B w i t h  BI > p ,  

Jx 

We may assume in addition (see Lemma 3.1) that 

(~) T ( U B ) =  U B C  U E,j. 
\ B ~ B  / BEIB ( i , j )~  K 

For each (i,j)~ K pick an element ylj E E 0 n A,. We may now define g as 

follows: On the complement of UBeBB we let g = )¢. On the skyscraper B we 

define g as follows: 

(4) g = jf on each B E B with I B I > P- 

If B E B and [B I = P, let x be the initial element of the block B ; by (8), x E E~j 

for a unique (i,j)@K. Define g on B by 

(5) (g(x),g(Tx),...,g(T"-'x))= (f(y,) ,  f (Tyq) , . .  ",f(T"-'y,i)). 

Because y~j E A.  and p > n, we have 

Hence (see (13) and (4) above) for every block B E B we have 

Since the function g is bounded and the blocks of B are bounded in cardinality, 

we deduce that (ii) holds. 

Since 

{x I g (x) / f(x)} c U a 
B E B  
ml=p 

we deduce (see (V) above) that (i) holds. 
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It remains  to check (iii). Since g = .f on 

239 

we need only be  concerned  with what happens  on blocks B E B. 

No te  first that if u, v E Ej then 

(6) ( f ( u ) , f ( T u ) , . . . , f ( T ' - ' u ) ) =  aj = ( f ( v ) , f ( T v ) , . . . , f ( T ' - ' v ) ) .  

Let  now B E B and let x be the initial e lement  of the block B. The re  are two 

possibilities: (I) I B I = P ; (II) I B I > P- 

(I) In I-- p. Assume x ~ E i i =  Ei N T - ° ( E s ) ;  then (see (5)) 

(7) ( g ( x ) , "  ", g ( T ° - ' x ) )  = (f(y,i), • • ", f (T°- 'y , , ) ) .  

Also T~ and T ~ both  belong to Ej. The re  are two cases: Yq 

Case  I. 1. T~is the initial e lement  of a block of height > p. Then  since g and f 

coincide on this block we have (use also (6)): 

( g ( T ° x ) ,  . .  ., g ( T O + " - l x ) )  = ( f ( T J ' x ) , . . . , f ( T O + ' - ~ x ) )  = a s 

= ( f ( T ~ , ) , ' - - ,  f ( T ° + ' - l y 0 ) ) .  

Case  I. 2. T ° x  is the initial e lement  of a block of height p. Assume 

T ° x  E E~k = Ej  f~ T-° (Ek) ;  then since yjk E Ejk we have 

(g(T°x), '' ", g (T°+"-'x)) = (f(y,k),'" ", f(Tm-'Y,k)) = a, 

= ( f ( T ° y , / ) , . . . ,  f ( T  ° +,~-,y,, )). 

In e i ther  Case I.] or  1.2 we have (use (7)) 

(8) (g ( x ) , . . . ,  g ( T ° ÷" - 'x  )) = (f(Y~s),'" ", f (  T° + " -'Y~s )). 

Similar reasoning shows that in Case II, if I B ] = s > p then 

(9) ( g ( x  ), . . ., g (  T . . . .  ' x  )) = ( f ( x  ), . . ., f (  r . . . .  ' x  )). 

From (8), (9) we der ive (iii). Tbis comple tes  the proof  of the Key Lemma.  
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